Microscopic theory of network glasses.
نویسندگان
چکیده
A theory of the glass transition of network liquids is developed using self-consistent phonon and liquid state approaches. The dynamical transition and entropy crisis characteristic of random first-order transitions are mapped as a function of the degree of bonding and density. Using a scaling relation for a soft-core model to crudely translate the densities into temperatures, theory predicts that the ratio of the dynamical transition temperature to the laboratory transition temperature rises as the degree of bonding increases, while the Kauzmann temperature falls explaining why highly coordinated liquids are "strong" while van der Waals liquids without coordination are "fragile."
منابع مشابه
Revealing the fast atomic motion of network glasses.
Still very little is known on the relaxation dynamics of glasses at the microscopic level due to the lack of experiments and theories. It is commonly believed that glasses are in a dynamical arrested state, with relaxation times too large to be observed on human time scales. Here we provide the experimental evidence that glasses display fast atomic rearrangements within a few minutes, even in t...
متن کاملStrain hardening of polymer glasses: entanglements, energetics, and plasticity.
Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While stress-strain curves for a wide range of temperature can be fit to the functional form predicted by entropic network models, many other results are fundamentally inconsistent with the physical picture underlying these models. Stresses are too large to be entropic and have the wrong trend with t...
متن کاملA microscopic continuum model for defect dynamics in metallic glasses
Motivated by results of the topological theory of glasses accounting for geometric frustration, we develop the simplest possible continuum mechanical model of defect dynamics in metallic glasses that accounts for topological, energetic, and kinetic ideas. A geometrical description of ingredients of the structure of metallic glasses using the concept of local order based on Frank-Kasper phases a...
متن کاملRotational symmetry breaking in Heisenberg spin glasses: A microscopic approach.
We study the consequences of rotational symmetry breaking in isotropic vector spin glasses. Starting from a microscopic model we identify the underlying symmetries of time-dependent (replica-dependent) SO(rn) rotations. The hydrodynamic triad theory is confirmed and the spinwave stiffness is related to a generalized transverse susceptibility. An expansion around mean-field theory is used to cal...
متن کاملOptical characterization of BK7 borosilicate glasses containing different amounts of CeO2
Borosilicate BK7 glasses doped with different amounts of CeO2 (0.5,1,1.5%) were prepared by the convenient melting process in this work. DTA analysis proved that 0.5-1% CeO2 has a network modifier role and then up to 1.5% it shows network former role.For structural studies, FT-IR and Raman spectroscopy were carried out. Fermi energy level, direct/ indirect optical band gap and Urbach energy wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 90 8 شماره
صفحات -
تاریخ انتشار 2003